Duality and Difference Operators for Matrix Valued Discrete Polynomials on the Nonnegative Integers
نویسندگان
چکیده
In this paper we introduce a notion of duality for matrix valued orthogonal polynomials with respect to measure supported on the nonnegative integers. We show that dual families are closely related certain difference operators acting polynomials. These belong so called Fourier algebras, which play key role in construction families. order illustrate duality, describe family Charlier type explicit shift allow us find formulas three term recurrences, and squared norms. essential ingredients different
منابع مشابه
Gale duality bounds for roots of polynomials with nonnegative coefficients
We bound the location of roots of polynomials that have nonnegative coefficients with respect to a fixed but arbitrary basis of the vector space of polynomials of degree at most d. For this, we interpret the basis polynomials as vector fields in the real plane, and at each point in the plane analyze the combinatorics of the Gale dual vector configuration. We apply our technique to bound the loc...
متن کاملTrace Formulas and Borg-type Theorems for Matrix-valued Jacobi and Dirac Finite Difference Operators
Borg-type uniqueness theorems for matrix-valued Jacobi operators H and supersymmetric Dirac difference operators D are proved. More precisely, assuming reflectionless matrix coefficients A,B in the self-adjoint Jacobi operator H = AS + AS + B (with S the right/left shift operators on the lattice Z) and the spectrum of H to be a compact interval [E−, E+], E− < E+, we prove that A and B are certa...
متن کاملSkew Divided Difference Operators and Schubert Polynomials
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with posit...
متن کاملDuality, Biorthogonal Polynomials and Multi–Matrix Models
The statistical distribution of eigenvalues of pairs of coupled random matrices can be expressed in terms of integral kernels having a generalized Christoffel–Darboux form constructed from sequences of biorthogonal polynomials. For measures involving exponentials of a pair of polynomials V1, V2 in two different variables, these kernels may be expressed in terms of finite dimensional “windows” s...
متن کاملMatrix-valued little q-Jacobi polynomials
Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the 2 × 2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Rodrigues formula, three-term recurrence relation and its relation to matrix-valued q-hypergeometric series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive Approximation
سال: 2023
ISSN: ['0176-4276', '1432-0940']
DOI: https://doi.org/10.1007/s00365-023-09637-1